Natural Pleistocene Monsters

    distributions-poisson-mean

    0.0.0 • Public • Published

    Mean

    NPM version Build Status Coverage Status Dependencies

    Poisson distribution expected value.

    The expected value for a Poisson random variable is

    Expected value for a Poisson distribution.

    where lambda > 0 is the mean parameter.

    Installation

    $ npm install distributions-poisson-mean

    For use in the browser, use browserify.

    Usage

    var mean = require( 'distributions-poisson-mean' );

    mean( lambda[, opts] )

    Computes the expected value for a Poisson distribution with parameter lambda . lambda may be either a number, an array, a typed array, or a matrix.

    var matrix = require( 'dstructs-matrix' ),
        data,
        mat,
        out,
        i;
     
    out = mean( 2 );
    // returns 2
     
    lambda = [ 2, 4, 8, 16 ];
    out = mean( lambda );
    // returns [ 2, 4, 8, 16 ]
     
    lambda = new Float32ArrayArray( lambda );
    out = mean( lambda );
    // returns Float64Array( [2,4,8,16] )
     
    lambda =  matrix( [ 2, 4, 8, 16 ], [2,2] );
    /*
        [ 2, 4,
          8, 16 ]
    */
     
    out = mean( lambda );
    /*
        [ 2, 4,
          8, 16 ]
    */

    The function accepts the following options:

    • accessor: accessor function for accessing array values.
    • dtype: output typed array or matrix data type. Default: float64.
    • copy: boolean indicating if the function should return a new data structure. Default: true.
    • path: deepget/deepset key path.
    • sep: deepget/deepset key path separator. Default: '.'.

    For non-numeric arrays, provide an accessor function for accessing array values.

    var lambda = [
        [0,2],
        [1,4],
        [2,8],
        [3,16]
    ];
     
    function getValue( d, i ) {
        return d[ 1 ];
    }
     
    var out = mean( lambda, {
        'accessor': getValue
    });
    // returns [ 2, 4, 8, 16 ]

    To deepset an object array, provide a key path and, optionally, a key path separator.

    var lambda = [
        {'x':[9,2]},
        {'x':[9,4]},
        {'x':[9,8]},
        {'x':[9,16]}
    ];
     
    var out = mean( lambda, {
        'path': 'x|1',
        'sep': '|'
    });
    /*
        [
            {'x':[9,2]},
            {'x':[9,4]},
            {'x':[9,8]},
            {'x':[9,16]},
        ]
    */
     
    var bool = ( data === out );
    // returns true

    By default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).

    var lambda, out;
     
    lambda = new Float64Array( [ 2,4,8,16 ] );
     
    out = mean( lambda, {
        'dtype': 'int32'
    });
    // returns Int32Array( [ 2,4,8,16 ] )
     
    // Works for plain arrays, as well...
    out = mean( [2,4,8,16], {
        'dtype': 'int32'
    });
    // returns Int32Array( [ 2,4,8,16 ] )

    By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.

    var lambda,
        bool,
        mat,
        out,
        i;
     
    lambda = [ 2, 4, 8, 16 ];
     
    out = mean( lambda, {
        'copy': false
    });
    // returns [ 2, 4, 8, 16 ]
     
    bool = ( data === out );
    // returns true
     
    mat = matrix( [ 2, 4, 8, 16 ], [2,2] );
    /*
        [ 2, 4,
          8, 16 ]
    */
     
    out = mean( mat, {
        'copy': false
    });
    /*
        [ 2, 4,
          8, 16 ]
    */
     
    bool = ( mat === out );
    // returns true

    Notes

    • If an element is not a positive number, the expected value is NaN.

      var lambda, out;
       
      out = mean( -1 );
      // returns NaN
       
      out = mean( 0 );
      // returns NaN
       
      out = mean( null );
      // returns NaN
       
      out = mean( true );
      // returns NaN
       
      out = mean( {'a':'b'} );
      // returns NaN
       
      out = mean( [ true, null, [] ] );
      // returns [ NaN, NaN, NaN ]
       
      function getValue( d, i ) {
          return d.x;
      }
      lambda = [
          {'x':true},
          {'x':[]},
          {'x':{}},
          {'x':null}
      ];
       
      out = mean( lambda, {
          'accessor': getValue
      });
      // returns [ NaN, NaN, NaN, NaN ]
       
      out = mean( lambda, {
          'path': 'x'
      });
      /*
          [
              {'x':NaN},
              {'x':NaN},
              {'x':NaN,
              {'x':NaN}
          ]
      */
    • Be careful when providing a data structure which contains non-numeric elements and specifying an integer output data type, as NaN values are cast to 0.

      var out = mean( [ true, null, [] ], {
          'dtype': 'int8'
      });
      // returns Int8Array( [0,0,0] );

    Examples

    var matrix = require( 'dstructs-matrix' ),
        mean = require( 'distributions-poisson-mean' );
     
    var data,
        mat,
        out,
        tmp,
        i;
     
    // Plain arrays...
    data = new Array( 10 );
    for ( i = 0; i < data.length; i++ ) {
        data[ i ] = i + 1;
    }
    out = mean( data );
     
    // Object arrays (accessors)...
    function getValue( d ) {
        return d.x;
    }
    for ( i = 0; i < data.length; i++ ) {
        data[ i ] = {
            'x': data[ i ]
        };
    }
    out = mean( data, {
        'accessor': getValue
    });
     
    // Deep set arrays...
    for ( i = 0; i < data.length; i++ ) {
        data[ i ] = {
            'x': [ i, data[ i ].x ]
        };
    }
    out = mean( data, {
        'path': 'x/1',
        'sep': '/'
    });
     
    // Typed arrays...
    data = new Int32Array( 10 );
    for ( i = 0; i < data.length; i++ ) {
        data[ i ] = i + 1;
    }
    out = mean( data );
     
    // Matrices...
    mat = matrix( data, [5,2], 'int32' );
    out = mean( mat );
     
    // Matrices (custom output data type)...
    out = mean( mat, {
        'dtype': 'uint8'
    });

    To run the example code from the top-level application directory,

    $ node ./examples/index.js

    Tests

    Unit

    Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:

    $ make test

    All new feature development should have corresponding unit tests to validate correct functionality.

    Test Coverage

    This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:

    $ make test-cov

    Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,

    $ make view-cov

    License

    MIT license.

    Copyright

    Copyright © 2015. The Compute.io Authors.

    Install

    npm i distributions-poisson-mean

    DownloadsWeekly Downloads

    0

    Version

    0.0.0

    License

    MIT

    Last publish

    Collaborators

    • avatar
    • avatar