@stdlib/math-strided-special-dsqrt
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.7 • Public • Published

    dsqrt

    NPM version Build Status Coverage Status dependencies

    Compute the principal square root for each element in a double-precision floating-point strided array.

    Installation

    npm install @stdlib/math-strided-special-dsqrt

    Usage

    var dsqrt = require( '@stdlib/math-strided-special-dsqrt' );

    dsqrt( N, x, strideX, y, strideY )

    Computes the principal square root for each element in a double-precision floating-point strided array x and assigns the results to elements in a double-precision floating-point strided array y.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );
    
    // Perform operation in-place:
    dsqrt( x.length, x, 1, x, 1 );
    // x => <Float64Array>[ 0.0, 2.0, 3.0, ~3.464, ~4.899 ]

    The function accepts the following arguments:

    • N: number of indexed elements.
    • x: input Float64Array.
    • strideX: index increment for x.
    • y: output Float64Array.
    • strideY: index increment for y.

    The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and to index the first N elements of y in reverse order,

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
    var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
    
    dsqrt( 3, x, 2, y, -1 );
    // y => <Float64Array>[ ~4.899, 3.0, 0.0, 0.0, 0.0, 0.0 ]

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    
    // Initial arrays...
    var x0 = new Float64Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
    var y0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
    
    // Create offset views...
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
    
    dsqrt( 3, x1, -2, y1, 1 );
    // y0 => <Float64Array>[ 0.0, 0.0, 0.0, 8.0, ~3.464, 2.0 ]

    dsqrt.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

    Computes the principal square root for each element in a double-precision floating-point strided array x and assigns the results to elements in a double-precision floating-point strided array y using alternative indexing semantics.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );
    var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
    
    dsqrt.ndarray( x.length, x, 1, 0, y, 1, 0 );
    // y => <Float64Array>[ 0.0, 2.0, 3.0, ~3.464, ~4.899 ]

    The function accepts the following additional arguments:

    • offsetX: starting index for x.
    • offsetY: starting index for y.

    While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
    var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
    
    dsqrt.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
    // y => <Float64Array>[ 0.0, 0.0, 0.0, 8.0, ~3.464, 2.0 ]

    Examples

    var uniform = require( '@stdlib/random-base-uniform' );
    var Float64Array = require( '@stdlib/array-float64' );
    var dsqrt = require( '@stdlib/math-strided-special-dsqrt' );
    
    var x = new Float64Array( 10 );
    var y = new Float64Array( 10 );
    
    var i;
    for ( i = 0; i < x.length; i++ ) {
        x[ i ] = uniform( 0.0, 200.0 );
    }
    console.log( x );
    console.log( y );
    
    dsqrt.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
    console.log( y );

    C APIs

    Installation

    npm install @stdlib/math-strided-special-dsqrt

    Usage

    #include "stdlib/math/strided/special/dsqrt.h"

    stdlib_strided_dsqrt( N, *X, strideX, *Y, strideY )

    Computes the principal square root for each element in a double-precision floating-point strided array X and assigns the results to elements in a double-precision floating-point strided array Y.

    #include <stdint.h>
    
    double X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };
    double Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    
    int64_t N = 4;
    
    stdlib_strided_dsqrt( N, X, 2, Y, 2 );

    The function accepts the following arguments:

    • N: [in] int64_t number of indexed elements.
    • X: [in] double* input array.
    • strideX: [in] int64_t index increment for X.
    • Y: [out] double* output array.
    • strideY: [in] int64_t index increment for Y.
    void stdlib_strided_dsqrt( const int64_t N, const double *X, const int64_t strideX, double *Y, const int64_t strideY );

    Examples

    #include "stdlib/math/strided/special/dsqrt.h"
    #include <stdint.h>
    #include <stdio.h>
    
    int main() {
        // Create an input strided array:
        double X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };
    
        // Create an output strided array:
        double Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    
        // Specify the number of elements:
        int64_t N = 4;
    
        // Specify the stride lengths:
        int64_t strideX = 2;
        int64_t strideY = 2;
    
        // Compute the results:
        stdlib_strided_dsqrt( N, X, strideX, Y, strideY );
    
        // Print the results:
        for ( int i = 0; i < 8; i++ ) {
            printf( "Y[ %i ] = %lf\n", i, Y[ i ] );
        }
    }

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2021. The Stdlib Authors.

    Install

    npm i @stdlib/math-strided-special-dsqrt

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    3

    Version

    0.0.7

    License

    Apache-2.0

    Unpacked Size

    76.6 kB

    Total Files

    20

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser